Hinweis: Die aktuelle OOP-Konferenz finden Sie hier!

Konferenzprogramm

Die im Konferenzprogramm der OOP 2022 Digital angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Unser Programm gibt es auch als praktische PDF-Datei >>Zum Download

Fake-Debatten mit NLP – Eine ironische KI-Lösung für Onlinediskussionen

Mit Hilfe moderner KI-Ansätze wie GPT-2, Tacotron und Conformers haben wir Roboterköpfe entwickelt, die vollständig autonom unter sich eine Kommentarspaltendiskussion führen und somit menschliches Mitdiskutieren überflüssig machen. Das TNG Innovation-Hacking-Team hat einen Prototyp eines Ende-zu-Ende-Systems für Natural Language Understanding entwickelt, bei dem Techniken wie Speech-to-Text (STT), Conditional Text Generation und Text-to-Speech (TTS) zum Einsatz kommen.

Zielpublikum: Architekt:innen, Entwickler:innen, Projektleiter:innen, Manager, Entscheider
Voraussetzungen: Keine
Schwierigkeitsgrad: Anfänger

Extended Abstract

Mit Hilfe moderner KI-Ansätze wie GPT-2, Tacotron und Conformers haben wir Roboterköpfe entwickelt, die vollständig autonom unter sich eine Kommentarspaltendiskussion führen und somit menschliches Mitdiskutieren überflüssig machen. Das TNG-Innovation-Hacking-Team hat einen Prototyp eines Ende-zu-Ende-Systems für Natural Language Understanding entwickelt, bei dem Techniken wie Speech-to-Text (STT), Conditional Text Generation und Text-to-Speech (TTS) zum Einsatz kommen.
Kommentarspalten in sozialen Medien sind zum vorherrschenden Schauplatz des öffentlichen Diskurses geworden. Diskussionen auf Facebook, Twitter oder Reddit sind jedoch berüchtigt für ihre primitive Debattenkultur und Ergebnislosigkeit. Die offensichtliche Lösung für diese enorme Zeitverschwendung ist die vollständige Automatisierung solch fruchtloser Debatten mittels eines Bots.
In diesem Vortrag zeigen wir verschiedene Kernkonzepte des NLP. Anhand von Live-Demos führen wir Sie durch das Scraping von Social-Media-Kommentaren, das Training eines Sprachmodells, die Synthese von Tausenden Stimmen und die Konstruktion von IoT-Roboterköpfen.

Thomas Endres arbeitet in der Rolle eines Partners als IT-Consultant für TNG Technology Consulting in München. Mit dem TNG-Innovation-Hacking-Team entwickelt er verschiedene Prototypen – darunter ein Telepräsenz-Robotik-System, verschiedene KI-Prototypen und AR/VR-Showcases. Als Intel Software Innovator und Black Belt präsentiert er weltweit neue Technologien wie KI, AR/VR und Robotik. Dafür erhielt er unter anderem einen JavaOne Rockstar-Award.

Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/thomas-endres/

Martin Förtsch studied computer sciences and works as an IT consultant for TNG Technology Consulting GmbH. In addition to the focus on agile software development in Java, he is familiar with the development of innovative showcases. As JavaOne Rockstar, Intel Software Innovator and Black Belt, he develops showcases with a focus on artificial intelligence, IoT, AR and VR.

Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/martin-foertsch/

Jonas Mayer arbeitet im Innovation Hacking Team der TNG Technology Consulting und beschäftigt sich dort hauptsächlich mit der Entwicklung von innovativen Showcases und Prototypen in Soft- und Hardware. So arbeitete er seit 2018 an verschiedensten Projekten, wie zum Beispiel Deepfakes, Mixed Reality KI-Kunstwerken und autonom fliegenden Minidrohnen.

Thomas Endres, Martin Förtsch, Jonas Mayer
09:00 - 10:45
Vortrag: Di 7.1-1

Vortrag Teilen

It’s not Rocket Science: Neuronale Netze verstehen

KI und insbesondere Deep Learning sind der Megatrend. Dank leistungsstarker Frameworks sind erste Schritte schnell gemacht. Leider stößt man aber genauso schnell auch wieder an (seine) Grenzen. Passt das genutzte Modell überhaupt zu meinem Problem? Wie sind die gewonnenen Ergebnisse zu bewerten? Kann durch geschickte Veränderung von Modell-Parametern das Ergebnis weiter verbessert werden? In der Session werden wir unser eigenes Neuronales Netz von Grund auf aufbauen und Schritt für Schritt verbessern. Aber keine Angst: „it’s not rocket science“!

Zielpublikum: Architekt:innen, Entwickler:innen, Projektleiter, Manager, Entscheider
Voraussetzungen: Keine
Schwierigkeitsgrad: Anfänger

Extended Abstract
Die verschiedenen KI-Frameworks machen es dem Anwender - auch ohne tiefgehendes Verständnis - relativ einfach, erste einfache KI-Modell aufzusetzen. Leider kommt der erste Frust aber mindestens genauso schnell. Denn nur wenn man die grundlegenden Prinzipien verstanden hat, die sich unter der Haube eines solchen Modells abspielen, wird man auch in der Lage sein, dessen Parameter sinnvoll zu "pimpen". Man sollte also auch als Nicht-Mathematiker die Grundlagen Neuronaler Netze und ihrer wesentlichen Parameter verstanden haben.

Lars Röwekamp, Gründer des IT-Beratungs- und Entwicklungsunternehmens open knowledge GmbH, beschäftigt sich im Rahmen seiner Tätigkeit als „CIO New Technologies“ mit der eingehenden Analyse und Bewertung neuer Software- und Technologietrends. Ein besonderer Schwerpunkt seiner Arbeit liegt derzeit in den Bereichen Enterprise und Cloud Computing sowie ML/AI, wobei neben Design- und Architekturfragen insbesondere die Real-Life-Aspekte im Fokus seiner Betrachtung stehen.

Lars Röwekamp
09:00 - 10:45
Vortrag: DI 7.1-2

Vortrag Teilen